However, there is a hidden cost that few people are aware of. This is the environmental cost (carbon dioxide [CO2] emissions) of training an AI model.
Take, for example, the training (not forgetting its usage) of the GPT-3 model; depending on the continent, the level of carbon emissions can vary from one to two-fold (Taddeo M. and al. "Artificial Intelligence and the Climate Emergency: Opportunities, Challenges, and Recommendations," June 8, 2021).
The research team found that the carbon footprint of different AI models is not necessarily taken into account during their design. This team has developed a framework and a series of measures to apply in order to, if not halt the development of AI models, at least reduce carbon emissions (Henderson P. and Al., "Towards the Systematic Reporting of the Energy and Carbon Footprints of Machine Learning," The Journal of Machine Learning Research, Volume 21, Issue 1, Article No: 248, pp 10039–10081).
The Surface Calculation of Carbon Footprint
To calculate the carbon footprint, there are applications available to optimize the performance of AI models (e.g., CodeCarbon). There are also calculators that can predict the carbon footprint of an AI project. For example, there's the Green Algorithms project (http://calculator.green-algorithms.org) developed by Loïc Lannelongue, Jason Grealey, and Michael Inouye from the University of Cambridge (United Kingdom) and the Baker Heart and Diabetes Research Institute (Melbourne, Australia).
However, calculating the carbon footprint is primarily an overall estimate rather than precise results ("Measuring the environmental footprint of the digital world, a real headache," Next, Mathilde Saliou, 2023).
Indeed, there are several factors to consider when calculating the carbon footprint of an AI model. These factors include the algorithm design (is the AI model code efficient?), electricity consumption (a factor that varies depending on the location and its production mode), test duration (on average, tests last 24 hours), and server hosting type (Cloud carbon footprint: Do Amazon, Microsoft, and Google have their head in the clouds? Carbon4, 2022).
Water Footprint
In addition to its carbon footprint, the use of AI leaves another type of imprint on our environment that is underestimated or even ignored by developers. This is freshwater consumption. To train OpenAI's AI model, GPT-3, Microsoft's data centers in the United States consumed 700,000 liters of freshwater. This is equivalent, in the automotive sector, to creating 370 BMW cars or 320 Tesla cars.
As mentioned by Professor Shaolei Ren ("How much water does AI consume? The public deserves to know," 2023, OECD.AI), training AI models requires freshwater for the air conditioning systems of server rooms. Additionally, freshwater is used in the cooling system of power plants.
For information, in Microsoft's data centers, for every kWh consumed, freshwater consumption ranges from 1.8 liters to 12 liters. To calculate water consumption, Professor Shaolei Ren and his associates applied this formula:
Water Footprint =
Server Energy * WUE On-site + Server Energy * PUE * WUE Off-site
Energy Waste
It's a fact that data centers are significant carbon emitters, generating heat from air conditioners and servers. Additionally, as mentioned in the previous paragraph, they are heavy consumers of freshwater.
However, it's important not to forget that heating (gas, wood, oil) also pollutes just as much, if not more. Not to mention the absurdity of using potable water for flushing toilets.
The goal isn't to stop heating altogether but rather to harness "digital" heat sources as a new form of fuel.
Conclusion
This brief investigation demonstrates that firstly, it is difficult to calculate the carbon footprint of AI usage. It is more of a rough estimate than a precise calculation ("Measuring the environmental footprint of the digital world, a real headache," Next, Mathilde Saliou, 2023). This depends primarily on the diverse nature of energy production methods (hydroelectric, thermal, nuclear, coal, etc.). Additionally, it depends on the nature of the infrastructure hosting the data (shared, private, etc.).
In this study, we have observed that depending on the nature (traditional or generative) of the trained model (Crawford, "Generative AI’s environmental costs are soaring—and mostly secret," 2024), there is a difference in the amounts of CO2 emitted.
We have also seen that in addition to emitting CO2, infrastructure requires freshwater for the operation of cooling systems to train AI models.
Apart from the consumption of energy and water resources and the production of CO2, the use of hardware for system infrastructures (servers, storage systems) and network infrastructures poses another ecological problem. This involves the extraction and use of rare earth minerals, as well as the management of electronic waste (Marcella Evite P. Bitcoin’s Climate Impact: Carbon Emissions and Beyond).
While the industry sector has its share of responsibility, the research sector also bears responsibility. The availability of scientific publications on the CO2 cost (and more generally, the environmental cost) of AI models is rather limited, as noted by researchers Roy Schwartz, Jesse Dodge, Noah A. Smith, Oren Etzioni (Schwartz R. and al. Green AI, 2019). The research team observed that between 2012 and 2019, there were more scientific publications on the accuracy of AI model calculations than on the efficiency of AI models.
Rare also the research studies on improving AI models or research studies on increasing the energy efficiency of production centers or infrastructures used for model training. It is worth noting that few companies are attempting to implement systems to recover the heat energy released by data centers. For example, French companies like EQUINIX or ILLIAD are developing systems to utilize the heat emitted by data centers to redistribute warm water in the urban heating system.
Instead of wasting time listening to incompetent people, it would be wiser to improve infrastructure and AI models. To support innovation and research in energy sectors or to leverage collateral effects (heat emissions, CO2 emissions, etc.) to our advantage rather than shooting down new technologies.
Among the solutions proposed, in addition to the certainty of reducing carbon emissions, but without returning to the Stone Age. There are geological solutions using the mineral olivine (Olivine weathering, Campbell Nilsen, Work in Progress, via Contrepoints). Or CO2 capture (Captage du carbone : ce qu'il faut savoir, Maxime Bilodeau, Science Presse). While these solutions may make you smile, they at least have the merit of existing and trying to find solutions.
And let's not forget the harmful effects of deforestation, since trees play an important role in capturing CO2 and producing oxygen (photosynthesis).
It should not be neglected that other sectors of activity are also sources of carbon emissions. As an indication, in 2022 worldwide, industry accounted for 24%, agriculture and electricity production each accounted for 22%, and transportation accounted for 15%.
While mankind emits around 8 billion tonnes of CO2 per year, Mother Nature emits around 380 million tonnes of CO2 every year through volcanic activity (Weathering of rocks impacts climate change, CNRS, Phys.org via Contrepoints).
Another "natural" source of carbon emissions is forest fires. In 2023, a sad record year for forest fires, countries such as Canada, the United States (the state of Hawaii, especially the island of Maui), Chile, Argentina and Greece experienced major forest fires. These forest fires accounted for 23% of carbon emissions in this sad record year (Nearly a quarter of carbon emissions burned in 2023 come from fires in Canada, Sarah Boumedda, Le Devoir).
In addition to the graph titled "Global Greenhouse Gas Emissions," carbon dioxide (CO2) comprises approximately 80% of greenhouse gases. The remaining greenhouse gases include methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), and water vapor (H2O).
The best for last, is the implementation of a carbon footprint monitoring system based on... Deep Learning and Machine Learning (Carbon Footprint Monitoring System Using Machine Learning and Deep Learning Techniques, IEEE Xplore, 2023). I'll leave you to ponder this idea.
Bibliography/Sitography
- Base Carbone complète de l’ADEME en français — v17.0, data-gouv.fr. Ce jeu de données a été publié à l’initiative et sous la responsabilité de Lou Dupont. Publié le 24 octobre 2019 et mis à jour le 5 juillet 2020. Lien : https://www.data.gouv.fr/fr/datasets/base-carbone-complete-de-lademe-en-francais-v17-0/
- Bitcoin’s Climate Impact: Carbon Emissions and Beyond, Patricia Marcella Evite, Avril 2023, Social Science Research Network. Lien : https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4650650
- Captage du carbone : ce qu’il faut savoir, Maxime Bilodeau, 7 décembre 2021, Agence Science Presse. Lien : https://www.sciencepresse.qc.ca/actualite/detecteur-rumeurs/2021/12/07/captage-carbone-faut-savoir
- La captation du CO2 par les arbres: 4 choses à savoir, Le Détecteur de rumeurs, 9 février 2021, Agence Science Presse. Lien : https://www.sciencepresse.qc.ca/actualite/detecteur-rumeurs/2021/02/09/captation-co2-arbres-4-choses-savoir
- Climat : la menace d’une « Terre étuve, Rachel Mulot, 5 février 2023, Sciences & Avenir. Lien : https://backoffice.sciencesetavenir.fr/sites/sea/files/styles/large/public/2023-01/les-emissions-mondiales-de-gaz-a-effet-de-serre.jpg?itok=0I36_2P-
- A conversation with Shaolei Ren: The Secret Water Footprint of AI Technology, Nabiha Syed, 15 avril 2023, The Markup Lien : https://themarkup.org/hello-world/2023/04/15/the-secret-water-footprint-of-ai-technology
- Un datacenter chauffe l’eau d’une piscine de Paris à 27 °C, Camille Anger, 16 mai 2017, 20 minutes. Lien : https://www.20minutes.fr/paris/2068527-20170516-data-center-chauffe-eau-piscine-paris-27
- High sensitivity of the continental-weathering carbon dioxide sink to future climate change, Beaulieu, Y. Goddéris, Y. Donnadieu, D. Labatand C. Roelandt, 26 février 2012, Nature Climate Change. Lien : https://www.nature.com/articles/nclimate1419
- Equinix investit dans un dixième datacentre parisien pour soutenir l’essor de l’économie numérique en France et renforce sa contribution au développement durable, 17 janvier 2022, Equinix. Lien : https://www.equinix.fr/newsroom/press-releases/2022/01/equinix-investit-dans-un-dixi-me-datacentre-parisien-pour-soutenir-l-essor-de-l-conomie-num-rique-en-france-et-renforce-sa-contribution-au-d-veloppement-durable
- Generative AI’s environmental costs are soaring—and mostly secret, Kate Crawford, 20 février 2024, Nature. Lien : https://www.nature.com/articles/d41586-024-00478-x
- Green Algorithms: Quantifying the Carbon Footprint of Computation, Loïc Lannelongue, Jason Grealey, Michael Inouye, 2 mai 2021, Advanced Science—Wiley Online Library Lien : https://doi.org/10.1002/advs.202100707
- How much water does AI consume? The public deserves to know, Shaolei Ren, 30 novembre 2023, OECD.AI/Academia. Lien : https://oecd.ai/en/wonk/how-much-water-does-ai-consume
- Jean-Marc Jancovici au Sénat : omissions et approximations, Thomas Jestin, 2 mars 2024, Contrepoints. Lien : https://www.contrepoints.org/2024/03/02/472148-jean-marc-jancovici-au-senat-omissions-et-approximations
- Making AI Less “Thirsty”: Uncovering and Addressing the Secret Water Footprint of AI Models, Pengfei Li, Jianyi Yang, Mohammad A. Islam et Shaolei Ren, dernière révision le 29 octobre 2023, arXiv.org. Lien : https://doi.org/10.48550/arXiv.2304.03271
- Mesurer l’empreinte environnementale du numérique, un vrai casse-tête, Mathilde Saliou, 14 mars 2023, Next. Lien : https://next.ink/1241/mesurer-empreinte-environnementale-numerique-vrai-casse-tete/
- Meetup FinOps #13 | Les politiques environnementales des hyperscalers par Carbone 4, 14 juin 2022, YouTube. Lien : https://youtu.be/tmeiJQbL9Xo
- Meetup FinOps #18 | Empreinte environnementale de l'IA + Synergies FinOps/GreenOps,6 décembre 2023, YouTube. Lien : https://youtu.be/lqgSeQ-YiNg
- Olivine weathering, Campbell Nilsen, 23 mai 2023, Works in Progress. Lien : https://worksinprogress.co/issue/olivine-weathering/
- Les origines de la vie sur Terre se cachent dans ces magnifiques paysages, Eva Van Den Berg, 10 juin 2022, National Geographic. Lien : https://www.nationalgeographic.fr/sciences/les-origines-de-la-vie-sur-terre-se-cachent-dans-ces-magnifiques-paysages
- PP World, Les COULISSES D’un Des Plus GRANDS Data Centers en France ! Recyclage de la chaleur à 14 min 20 s, 30 octobre 2022, YouTube. Lien : https://www.youtube.com/watch?v=J9p-k-FFztQ&t=860s
- PP World, Les COULISSES D’un Des Plus GRANDS Data Centers en France ! La Piscine Olympique 2024 à 15 min 20 s, 30 octobre 2022, YouTube. Lien : https://www.youtube.com/watch?v=J9p-k-FFztQ&t=920s
- Paris : Quand les data centers chaufferont la ville…, Fabrice Pouliquen, 04 mars 2016, 20 minutes. Lien : https://www.20minutes.fr/paris/1800039-20160304-paris-quand-data-centers-chaufferont-ville
- Près du quart des émissions de carbone brûlé en 2023 viennent des feux au Canada, Sarah Boumedda, 12 décembre 2023, Le Devoir. Lien : https://www.ledevoir.com/environnement/803670/pres-quart-emissions-carbone-brule-2023-venaient-canada?
- Power Hungry Processing: Watts Driving the Cost of AI Deployment ? Alexandra Sasha Luccioni, Yacine Jernite et Emma Strubell, 28 novembre 2023, arXiv.org. Lien : https://doi.org/10.48550/arXiv.2311.16863
- Quelles sont les émissions de CO2 par source d’énergie ? Younes Dkhissi, 28 septembre 2023, Climate Consulting by Selectra. Lien : https://climate.selectra.com/fr/empreinte-carbone/energie
- Quels sont les principaux gaz à effet de serre ? 1erjuin 2022, GÉO magazine Lien : https://www.geo.fr/environnement/quels-sont-les-principaux-gaz-a-effet-de-serre-210060
- Training a single AI model can emit as much carbon as five cars in their lifetimes, Karen Hao, 6 juin 2019, MIT Technology Review Lien : https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
- Towards the systematic reporting of the energy and carbon footprints of machine learning, Peter Henderson, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky et Joelle Pineau, 1er Janvier 2020, Association for Computing Machinery Digital Library Lien : https://dl.acm.org/doi/abs/10.5555/3455716.3455964
- Weathering of rocks impacts climate change, CNRS, 5 mars 2012, Phys.org. Lien : https://phys.org/news/2012-03-weathering-impacts-climate.html
Other articles (not treated) related to the publication
- Bitcoin creator Satoshi Nakamoto dismissed early climate concerns, article publié dans NewScientist, Matthew Sparkes, 23 février 2024 Lien : https://www.newscientist.com/article/2418762-bitcoin-creator-satoshi-nakamoto-dismissed-early-climate-concerns/
- Le captage, l’utilisation et le stockage du carbone sont nécessaires de toute urgence (ONU), 3 mars 2021, ONU Info, Organisation des Nations Unis/United Nations. Lien : https://news.un.org/fr/story/2021/03/1090762
- Le captage et stockage du CO2, solution d’avenir pour le climat ou mirage ? Audrey Garricet Perrine Mouterde, 26 janvier 2022, Le Monde. Lien : https://www.lemonde.fr/planete/article/2022/01/26/le-captage-et-stockage-du-co2-solution-d-avenir-pour-le-climat-ou-mirage_6110976_3244.html
- Charte d'engagement NZI for IT, Zénon Vasselin, Clara Benedini, Carbone 4, janvier 2024 Lien : https://www.carbone4.com/charte-engagements-nzi-it?
- Le cloud a un rôle important à jouer dans la décarbonisation, Stéphane Chmielewski, 15 février 2024, LinkedIn Lien : https://www.linkedin.com/pulse/le-cloud-un-r%25C3%25B4le-important-%25C3%25A0-jouer-dans-la-st%25C3%25A9phane-chmielewski-jfgyf/
- Harnessing AI for a Greener Future: Integrating AI and Quantum Computing in Climate Change Solutions, Nicolas Babin, 22 décembre 2023, LinkedIn Lien : https://www.linkedin.com/pulse/harnessing-ai-greener-future-integrating-quantum-computing-babin-0qude/
- L’IA face à la crise écologique, Bruno Guglielminetti, blog Mon Carnet, 1er mars 2024 Lien : https://moncarnet.blog/2024/03/01/lia-face-a-la-crise-ecologique/
- Rapport public annuel 2024, Cour des Comptes, République Française, 12 mars 2024 Lien : https://www.ccomptes.fr/fr/publications/le-rapport-public-annuel-2024
Tutti sono invitati a partecipare al progetto STULTIFERA NAVIS!